Médias móveis: quais são eles, entre os indicadores técnicos mais populares, as médias móveis são usadas para avaliar a direção da tendência atual. Todo tipo de média móvel (comumente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinado, a média resultante é então plotada em um gráfico para permitir que os comerciantes vejam dados suavizados em vez de se concentrar nas flutuações de preços do dia-a-dia inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando a média aritmética de um determinado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e depois dividiria o resultado em 10. Na Figura 1, a soma dos preços nos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em conta os últimos 10 pontos de dados para dar aos comerciantes uma idéia de como um recurso tem um preço relativo aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas um meio regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser descartados do conjunto e novos pontos de dados devem vir para substituí-los. Assim, o conjunto de dados está constantemente em movimento para contabilizar os novos dados à medida que ele se torna disponível. Este método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) se move para a direita e o último valor de 15 é descartado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a redução da média do conjunto de dados, o que faz, neste caso de 11 a 10. O que as médias móveis parecem Uma vez que os valores da MA foram calculados, eles são plotados em um gráfico e depois conectados para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos dos comerciantes técnicos, mas como eles são usados podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você se acostumará a elas com o passar do tempo. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e o que parece, bem, introduza um tipo diferente de média móvel e examine como isso difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas, como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ocorre na sequência. Os críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a esta crítica, os comerciantes começaram a dar mais peso aos dados recentes, que desde então levaram à invenção de vários tipos de novas médias, sendo a mais popular a média móvel exponencial (EMA). (Para leitura adicional, veja Noções básicas de médias móveis ponderadas e qual a diferença entre uma SMA e uma EMA) Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Para novas informações. Aprender a equação um tanto complicada para calcular um EMA pode ser desnecessário para muitos comerciantes, já que quase todos os pacotes de gráficos fazem os cálculos para você. No entanto, para você geeks de matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há nenhum valor disponível para usar como EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Nós fornecemos uma amostra de planilha que inclui exemplos da vida real de como calcular uma média móvel simples e uma média móvel exponencial. A Diferença entre o EMA e o SMA Agora que você tem uma melhor compreensão de como o SMA e o EMA são calculados, dê uma olhada em como essas médias diferem. Ao analisar o cálculo da EMA, você notará que é dada mais ênfase aos pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos de tempo utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente aos preços em mudança. Observe como o EMA tem um valor maior quando o preço está subindo e cai mais rápido que o SMA quando o preço está em declínio. Essa capacidade de resposta é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que os dias diferentes significam As médias em movimento são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que deseja ao criar a média. Os períodos de tempo mais comuns usados em médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será para as mudanças de preços. Quanto maior o período de tempo, menos sensível ou mais suavizado, a média será. Não há um marco de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual é o melhor para você é experimentar vários períodos de tempo diferentes até encontrar um que se encaixa na sua estratégia. Médias móveis: como usar ThemDavid, Yes, MapReduce destina-se a operar em uma grande quantidade de dados. E a idéia é que, em geral, o mapa e reduzir as funções não devem se preocupar com quantos mapeadores ou quantos redutores existem, isso é apenas otimização. Se você pensa cuidadosamente sobre o algoritmo que postei, você pode ver que não importa qual mapeador recebe as partes dos dados. Cada registro de entrada estará disponível para cada operação de redução que o necessite. Ndash Joe K 18 de setembro 12 às 22:30 Na melhor das minhas compreensões, a média móvel não é bem mapas para o paradigma MapReduce, uma vez que seu cálculo é basicamente uma janela deslizante sobre dados classificados, enquanto o MR é o processamento de intervalos não interceptados de dados classificados. A solução que vejo é a seguinte: a) Implementar partição personalizada para poder fazer duas partições diferentes em duas execuções. Em cada execução, seus redutores obterão diferentes faixas de dados e calcularão a média móvel quando apropriado vou tentar ilustrar: Em dados da primeira execução para os redutores devem ser: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . Aqui você irá calcular a média móvel para alguns Qs. Na próxima execução, seus redutores devem ter dados como: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 E caclule o resto das médias móveis. Então você precisará agregar resultados. Idéia de compartilhamento personalizado que terá dois modos de operação - cada vez que se divide em intervalos iguais, mas com alguma mudança. Em um pseudocódigo, será assim. Partição (keySHIFT) (MAXKEYnumOfPartitions) onde: SHIFT será retirado da configuração. MAXKEY valor máximo da chave. Eu assumo por simplicidade que eles começam com zero. RecordReader, IMHO não é uma solução, uma vez que está limitado a divisão específica e não pode deslizar sobre o limite das divisões. Outra solução seria implementar a lógica personalizada de dados de entrada de divisão (faz parte do InputFormat). Pode ser feito para fazer 2 slides diferentes, semelhante ao particionamento. Respondeu 17 de setembro às 8: 59 Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos primeiros 3 períodos de tempo e colocamos ao lado do período 3. Poderíamos ter colocado A média no meio do intervalo de tempo de três períodos, isto é, ao lado do período 2. Isso funciona bem com períodos de tempo estranhos, mas não é tão bom para períodos de tempo iguais. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar esse problema, suavizamos os MAs usando M 2. Assim, suavizamos os valores suavizados. Se medimos um número par de termos, precisamos suavizar os valores suavizados. A tabela a seguir mostra os resultados usando M 4.
No comments:
Post a Comment